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Abstract

A generalized method is presented for vaporization and combustion of multiple-droplet arrays, liquid films, pools,
and streams. Conditions are explained for the existence of a mass flux potential function that is independent of fuel type
and scalar boundary conditions and satisfies the three-dimensional Laplace�s equation. Gas-phase properties, compo-
sition, and flame location are functions only of the potential function, specified scalar boundary conditions, and fuel
type. Variable properties are considered. Flame stand-off distances for liquid interfaces near wet-bulb temperatures
are predicted more accurately with variable properties. Flame location and transport properties are found for decane,
heptane, and methanol fuels, with different ambient conditions. The analysis also applies to vaporization without com-
bustion and to combustion with transient liquid-phase heating.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Droplet array vaporization and combustion has been
studied extensively with a potential function governing
the gas-phase mass flux. Labowsky first utilized the po-
tential function in the absence of Stefan convection [1].
Stefan convection and combustion were considered in
subsequent papers [2,3]. The potential function satisfies
the three-dimensional Laplace�s equation, and accounts
for the effects of droplet array size and geometry on
vaporization rates. The method has not previously been
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extended to other configurations for vaporizing or burn-
ing liquids. Most of the previous work on droplet array
combustion have utilized this transformation to
Laplace�s equation, and differ mainly in the complexity
of the droplet arrays and the method used for solving
Laplace�s equation. Analytical solutions for two-drop
arrays were found by Twardus and Brzustowski [4],
Brzustowski et al. [5], and Umemura et al. [6,7]. Siva-
sankaran et al. [8] studied two droplets with a numerical
differencing scheme. Labowsky solved Laplace�s equa-
tion using a method of images which, in principle, is
an exact solution in the form of an infinite series. Mar-
berry et al. [9] and Elperin and Krasovitov [10] both
use a method based on the method-of-images but each
uniquely modified their method to reduce the error
associated with series truncation. A more detailed
description of previous work with the advantages and
ed.
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Nomenclature

a droplet radius
B transfer number
cp constant pressure specific heat
D binary diffusion coefficient
h specific enthalpy
L latent heat of vaporization
Leff effective latent heat of vaporization
_m mass vaporization rate
N number of species
_q magnitude of heat flux
Q heating value per unit mass of fuel
r radial coordinate
rF radial flame location
T temperature
~V mass-averaged velocity vector
Y mass fraction

Greek symbols

a coupling function
g normalized vaporization rate

k thermal conductivity
m stoichiometric fuel to oxidizer mass ratio
q mixture density
/ potential function
U normalized potential function
UF flame surface contour
_x rate of mass production per unit volume

Subscripts

F fuel
iso isolated droplet
j the jth droplet
l liquid
m the mth species
O oxidizer
ref reference value
S liquid surface value
WB wet-bulb
1 ambient value
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limitations of various solution methods can be found in
[11].

All of the aforementioned work rely on a potential
function and the solution to Laplace�s equation in their
respective geometry. While the modification of vapori-
zation and/or burning rates were presented in each of
the cited papers, gas-phase properties and flame con-
tours were seldom given. Since all of the work studying
more than two droplets are based on image methods,
vaporization or burning rates are readily found without
determination of the potential function in the gas-
phase. Consequently, flame-surface contours for arrays
larger than two droplets are only presented in [11],
where a finite-difference scheme was used. Ref. [11]
was also the first paper to present individual droplet
vaporization rates for more than nine droplets, individ-
ual droplet burning rates for more than eight droplets,
and individual droplet burning rates in arrays with
non-equal interactions for arrays with more than three
droplets. Furthermore, in all of the work cited thus far,
qD = k/cp was assumed to be constant and transient
heating of the liquid was not considered. Quasi-steady
vaporization or burning rates were presented in a non-
dimensional form normalized by single-droplet values.
In this normalized form, the specific calculation of
the properties, variable or constant, is not required in
the absence of varying liquid temperatures. Dimen-
sional vaporization rates require a specific determina-
tion of qD = k/cp whether it is constant or variable.
Because the normalized vaporization rates depend only
on array size and geometry, the specification of fuel
type only becomes necessary in finding the potential
contour corresponding to flame location. Even in this
case, only properties at the liquid–gas interface are
required.

Unlike the previous analyses which focused on spe-
cific droplet array geometries, this paper deals with a
generalized problem formulation applicable to droplet
arrays of any geometry. Theoretical foundations
regarding the existence and implications of the poten-
tial function has not previously been provided. Several
assumptions made in the previous work will be relaxed
in the current analysis. Most significantly, a constant
value for qD = k/cp will not be required, and this will
be shown to have an impact on burning rates and
flame locations. Furthermore, the case of vaporization
without combustion will not require a unitary Lewis
number. The effects of different ambient temperatures
and ambient oxidizer mass fractions are presented
for decane, heptane, and methanol fuels. Correlations
for relevant gas-phase transport properties and flame
contour values are given in terms of liquid surface
temperatures to aid future liquid-heating calculations.
These liquid-heating cases are presented elsewhere
[12]. Finally, while not previously demonstrated, the
potential function and reduction to Laplace�s equation
are not restricted to droplet or spray geometries.
Liquid–gas interface problems such as liquid films or
pools with negligible forced convection can also be
treated.
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2. Generalized problem formulation

The generalized formulation relies on many of the
assumptions used in the cited work. A quasi-steady
gas-phase and one-step chemical reaction are required.
Fourier heat conduction and Fickian mass diffusion
apply. All liquids have identical single-component com-
positions. Radiation is neglected. Phase equilibrium ex-
ists at the liquid surfaces, and the gas is negligibly
soluble in the liquid. Kinetic energy, viscous dissipation,
and other terms of the order of the square of the Mach
number will be neglected. The momentum equation sub-
ject to these assumptions yields that the pressure is of the
order of the square of the Mach number and, in the cal-
culation of the scalar properties, it can be considered as
constant. The steady-state continuity equation, energy
conservation, and species conservation equations apply

r � ðq~V Þ ¼ 0; ð1Þ

r � q~V h� krT �
XN
m¼1

qDmhmrY m

 !
¼ � _xFQ; ð2Þ

r � q~V Y m � qDmrY m

� �
¼ _xm m ¼ 1; . . . ;N . ð3Þ

Sensible mixture enthalpy h, species enthalpy hm, specific
heat cp, and mixture thermal conductivity k are com-
puted with the following:

h ¼
Z T

T ref

cpðT 0ÞdT 0; hm ¼
Z T

T ref

cp;mðT 0ÞdT 0;

cp ¼
X
m

cp;mðT ÞY m; k ¼
X
m

kmðT ÞY m. ð4Þ

It will be shown in the next section that if there is no tan-
gential velocity at the liquid surface, if scalar properties
are uniform on the liquid surface, and if the gas flow is
irrotational, the gas-phase mass flux is governed by a
potential function /, such that

q~V ¼ r/. ð5Þ

From Eq. (1), / satisfies Laplace�s equation and the fol-
lowing boundary conditions:

r2/ ¼ 0
/ ¼ 0 at liquid surfaces;

/ ¼ /1 far from the liquid.

�
ð6Þ

With a potential function governing mass flux, it then
follows that:

r� q~V ¼ qðr � ~V Þ � ~V �rq ¼ 0. ð7Þ

Therefore, the existence of a potential function requires
an irrotational velocity field and the alignment or
counter-alignment of the density gradient and velocity
vectors throughout the gas-field. As a consequence,
velocities at the liquid–gas interface will not have a tan-
gential component since scalar properties are uniform
over the liquid surface. Species and energy balances
at the liquid surfaces indicate that the quantity
Leff/(1 � YFS) is spatially uniform over all liquid sur-
faces. Therefore, the instantaneous liquid surface tem-
perature TS and the potential function / will also be
spatially uniform at all liquid surfaces. As mentioned,
verification of the existence of a potential function will
be given in Section 2.1. The equations shown here will
apply to vaporization with and without combustion.
Simplifications and additional assumptions will be
made as needed.
2.1. Analysis of vaporization without combustion

In the absence of combustion, no additional assump-
tions are necessary. Eqs. (2) and (3) are reduced to

r � ðq~V h� krT �
XN
m¼1

qDmhmrY mÞ ¼ 0; ð8Þ

r � q~V Y m � qDmrY m

� �
¼ 0 m ¼ 1; . . . ;N . ð9Þ

From Eqs. (1) and (9), it follows that:

r � ðq~V Y m � qDmrY m � Cmq~V Þ ¼ 0; m ¼ 1; . . . ;N ;

ð10Þ

where Cm is a constant. Assume Ym is uniform over the
liquid surface and ~V is normal to the liquid surface.
Choose Cm so that

ðq~V Y mÞS � ðqDmrY mÞS � ðCmq~V ÞS ¼ 0 m ¼ 1; . . . ;N

ð11Þ

is satisfied at the liquid boundary. Then, define

q~V Y m � qDmrY m � Cmq~V ¼ ~Wm m ¼ 1; . . . ;N ; ð12Þ

where ~Wm ¼ 0 at the liquid surface from (11), and from
(12), r � ~Wm ¼ 0 throughout the gas-field. Note further
that q~V and $Ym go to zero at infinity; so ~Wm ¼ 0 there.
The only solution is ~Wm ¼ 0. Therefore

ðY m � CmÞq~V � qDmrY m ¼ 0 m ¼ 1; . . . ;N ð13Þ

throughout the field. Applying the same analysis to the
energy equation with a uniform temperature over the li-
quid surface, and noting that $h goes to zero at infinity

ðh� CÞq~V � krT �
XN
m¼1

qDmhmrY m ¼ 0. ð14Þ

Consequently, the heat and mass diffusion flux vectors
are aligned (or counter-aligned) with the streamlines.
The same analysis can be applied in the next subsection
to the equation governing the scalar coupling functions.
Since the mass fractions and enthalpy have gradients
aligned with the velocity vector, and the pressure varia-
tion is insignificant, the density gradient will be locally
parallel to the streamlines. Note that for a quasi-steady
inviscid flow, the fractional pressure variations are of
the order of the square of the Mach number. As shown
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by Joseph [13,14], constant density flows with normal vis-
cous stress can be irrotational. In that case, fractional
variations in the thermodynamic pressure can be of the
order of the Mach number. So, viscosity could be consid-
ered in our potential flow analysis if the constant-density
assumption were invoked. With an irrotational flow, Eq.
(7) is satisfied and the mass-flux potential may be used.

ðY m � CmÞr/� qDmrY m ¼ 0 m ¼ 1; . . . ;N ; ð15Þ

ðh� CÞr/� krT �
XN
m¼1

qDmhmrY m ¼ 0. ð16Þ

Species mass balance at the liquid–gas interface indicates
that Cm = 0 for m 5 F, and CF = 1. Eq. (15) is multi-
plied by hm and summed for all species. The result is sub-
tracted from (16). Energy balance at the interface yields
the constant C, and noting that $T = ($hF)/cp,F

r lnðhF � hFS þ LeffÞ ¼
r/
k=cp;F

; ð17Þ

Leff ¼ Lþ _ql
jq~V jS

. ð18Þ

The term _ql is the magnitude of the conductive heat flux
into the liquid when droplets are not at wet-bulb temper-
atures. With the arbitrariness of a constant in the deter-
mination of /, taking /S = 0 incurs no loss of generality.
The implicit relation between hF and / is obtained by
integrating Eq. (17) along a pathline to yield

1þ hF � hFS
Leff

¼ ð1þ BHÞe
�
R /1
/

d/0
k=cp;F ; ð19Þ

where

BH ¼ hF1 � hFS
Leff

. ð20Þ

Evaluation of Eq. (19) at infinity, we obtain

/1 ¼ k=cp;F lnð1þ BHÞ; ð21Þ

where the definition is made that

k=cp;F ¼ /1R /1
0

d/0

k=cp;F

. ð22Þ

A normalized potential function U is defined such that

U ¼ /
/1

. ð23Þ

Eqs. (19) and (22) can now be written as functions of U

1þ hF � hFS
Leff

¼ ð1þ BHÞ
k=cp;F

R U

0

dU0
k=cp;F ; ð24Þ

k=cp;F ¼
Z 1

0

dU0

k=cp;F

� ��1

. ð25Þ

From Eqs. (1), (6), and (23), the normalized potential
function in any geometry satisfies Laplace�s equation
with the following boundary conditions:
r2U ¼ 0
U ¼ 0 at liquid surfaces;

U ¼ 1 far from the liquid.

�
ð26Þ

The species equations are treated in a process similar to
the energy equation. Integration of (15) for each of the
N species, and using the relations given in Eqs. (21)
and (23), we obtain

Y F � 1

Y FS � 1
¼ ð1þ BHÞk=cp;F

R U

0

dU0
qDF m ¼ F; ð27Þ

Y m

Y m1
¼ 1þ BHð Þk=cp;F

R U

0

dU0
qDm

�Lem m 6¼ F. ð28Þ

The following relations are defined:

Lem ¼ k=cp;F
qDm

ð29Þ

qDm ¼
Z 1

0

dU0

qDm

� ��1

ð30Þ

BM ¼ Y FS � Y F1

1� Y FS

ð31Þ

The relationship between BM and BH is given by

1þ BM ¼ ð1þ BHÞLeF . ð32Þ

Solutions to Eqs. (24), (27), and (28) yield the rela-
tionship between the gas-field properties and the nor-
malized potential function U with a variable Lewis
number and variable qD, where U is governed by Eq.
(26).

2.2. Combustion analysis

The formulation presented earlier in Section 2 applies
here with several additional assumptions. Fast chemical
kinetics prevents oxygen from diffusing to the liquid sur-
face, and a unitary Lewis number, qD = k/cp, is re-
quired. The Shvab–Zeldovich form of the species and
energy conservation equations apply

r � ðq~V ai � qDraiÞ ¼ 0; i ¼ 1; 2. ð33Þ

The coupling functions are defined as

a1 ¼ hþ mQY O; a2 ¼ Y F � mY O. ð34Þ

Consistent with the analysis of the previous sections, the
advection and diffusion of the scalar variables (34) are
aligned with the flow

q~V ai � qDrai ¼ Aiq~V ; i ¼ 1; 2. ð35Þ

Substitution of (5) into (35) and rearranging, it then fol-
lows that:

r lnðai � AiÞ ¼
r/
qD

. i ¼ 1; 2. ð36Þ

Integrating along any path, and setting / = 0 at the
liquid surfaces
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ai � Ai

ai;S � Ai
¼ e
R /

0

d/0
qD ; i ¼ 1; 2. ð37Þ

Note that this solution for the coupling function ai is
consistent with the literature when qD = constant. Eval-
uation of Eq. (37) in the far-field yields the relation for
/1

/1 ¼ qD ln
ai;1 � Ai

ai;S � Ai

� �
¼ qD ln 1þ Bð Þ i ¼ 1; 2.

ð38Þ

The definitions are made that

qD ¼ /1R /1
0

d/0

qD

; ð39Þ

B ¼ h1 � hS þ mQY O1
Leff

¼ mY O1 þ Y FS

1� Y FS

; ð40Þ

where Leff is given by Eq. (18). Since Le = 1 implies that
qD = k/cp, these values will be used interchangeably
wherever necessary. Eqs. (23), (37) and (38) are com-
bined to yield

ai � Ai

ai;S � Ai
¼ 1þ Bð ÞqD

R U

0

dU0
k=cp . ð41Þ

Application of boundary conditions provides the values
of Ai. Then, from Eqs. (34) and (41)

ð1þ BÞqD
R U

0

dU0
k=cp ¼ 1þ h� hS þ mQY O

Leff

¼ 1þ Y F � Y FS � mY O

Y FS � 1
. ð42Þ

Noting that Le = 1, the combination of Eqs. (23), (38),
and (39) yields the following relation:

qD ¼ k=cp ¼
Z 1

0

dU0

k=cp

� ��1

. ð43Þ

In the limit of infinite-rate chemical kinetics, the flame
surface will lie on the constant U surface denoted by
UF. This value is determined implicitly via the following
expression:

lnð1� Y FSÞ
lnð1þ BÞ ¼ �qD

Z UF

0

dU0

k=cp
. ð44Þ

The system of Eqs. (42)–(44) yield the four relations nec-
essary to determine the values of qD, the flame contour
UF, mixture enthalpy h, and fuel vapor mass fraction YF.
Fuel type, T1, YO1, and TS are treated as parameters in
the calculations. Eqs. (42) and (43) are coupled because
transport properties and specific heat depend on temper-
ature and composition. When the liquid surface temper-
ature is less than the wet-bulb value, phase equilibrium
dictates that B be calculated with the last term in Eq.
(40). The first term then provides the liquid heating rate
through Leff. Note that qD was not assumed constant
in the analysis. With the assumption qD ¼ k=cp ¼
qD ¼ constant, Eqs. (42)–(44) are simplified and uncou-
pled. Then

ð1þ BÞU ¼ 1þ h� hS þ mQY O

Leff

¼ 1þ Y F � Y FS � mY O

Y FS � 1
; ð45Þ

UF ¼ � lnð1� Y FSÞ
lnð1þ BÞ . ð46Þ

Eqs. (45) and (46) would still result if the constant value
of qD = k/cp were defined arbitrarily, without accor-
dance to Eq. (43). For example, if the value is taken at
infinity or at the liquid surface.

In either the variable qD or constant qD situation,
the vaporization rate of the jth droplet (or any portion
of the liquid surface designated as the jth segment) is ob-
tained by integrating the mass flux over the droplet (seg-
ment) surface

_mj ¼
Z Z

r/ � d~Aj

¼ qD lnð1þ BÞ
Z Z

rU � d~Aj ð47Þ

It is not uncommon for droplet vaporization rates to be
normalized by the vaporization rate of an isolated drop-
let at the wet-bulb temperature. In the literature, this has
often been referred to as a burning rate correction factor
or an interaction coefficient, g. Then, for the jth droplet

gj ¼
_mj

_miso

¼ 1

4paj

Z Z
rU � d~Aj. ð48Þ

The vaporization rate of an isolated droplet at wet-bulb
temperature with variable qD = k/cp is given by

_miso ¼ 4p
Z 1

a

dr
ðk=cpÞr2

� ��1

lnð1þ BÞ. ð49Þ

For a single, isolated droplet, the solution to Eq. (26)
yields Uiso = 1 � a/r. Upon substitution with (43), Eq.
(49) can be expressed as

_miso ¼ 4paqD lnð1þ BÞ. ð50Þ

Therefore, within this generalized analysis, a single, iso-
lated droplet is a special case for which the solution U to
Eq. (26) can be obtained analytically.

The use of normalized vaporization rates as in Eq.
(48) has been the standard for authors studying multi-
ple droplet arrays. Although this practice does provide
an assessment of the effect of droplet interactions, sev-
eral key aspects are obscured. To obtain an actual
(dimensional) vaporization rate, one would refer to
Eq. (48) with g known for a specific geometry. How-
ever, the vaporization rate of an isolated droplet, and
more specifically the value of qD = k/cp, is not obvious.
In all of the cited work qD is assumed constant, yet in
practice it will vary spatially in the gas-phase. No
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mention of the appropriate value, or an appropriate
average value has ever been presented. This is possibly
due to the absence of liquid-heating, where the numer-
ical value of qD = k/cp would have been required. Law
[15], and Law and Sirignano [16] include liquid-phase
heating for an isolated drop but use a constant value
for qD. Another shortcoming of a normalized vapori-
zation rate involves its applicability to array geometry
optimization. For example, would a larger number of
smaller droplets result in higher burning rates? This
issue, along with a transient liquid-phase heating anal-
ysis are discussed in [12].

The analysis applies universally to all droplet array
sizes and geometries. As previously mentioned, other
liquid–gas interface problems are also included.
Geometrical effects are calculated separately through
the potential function U, and are independent of gas-
phase transport properties and boundary conditions.
Consequently, the problem for the scalar properties is
one-dimensional for any configuration while the three-
dimensional analysis is necessary only in solving Eq.
(26). Although no solutions to Laplace�s equation will
be presented here, quasi-steady results for droplet arrays
of various configurations can be found in the references.
The coupled Eqs. (42)–(44) are solved numerically with
variable properties computed with Eq. (4). The iterative
solution takes qD ¼ k=cp ¼ qD as a first approximation.
Mixture composition and enthalpy are then determined
as a function of U from Eq. (42), and used in (43) and
(44) to determine qD and UF. The same mixture compo-
sition is used in (42), but with the newly computed qD
and UF to yield updated mixture compositions and
enthalpies. The process is repeated, with good conver-
gence after approximately 20 iterations.
c
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Fig. 1. Temperature, fuel and oxidizer mass fractions versus U
with T1 = 298 and YO1 = 0.231 for various surface tem-
peratures: (a) decane, TWB = 429.73 K; (b) heptane, TWB =
359.36 K and (c) methanol, TWB = 327.44 K.
3. Results and discussion

The scalar quantities T, YF, and YO are shown versus
U in Fig. 1a–c for decane, heptane, and methanol fuels,
with T1 = 298 K and YO1 = 0.231. The ambient pres-
sure is one atmosphere in all of the calculations. The
large variation in flame location for decane indicated
by Fig. 1a is caused by the larger wet-bulb temperature
and lower volatility resulting in lower values of YFS at
298 K than for the other fuels. Mixture temperatures
and composition are shown in Fig. 2 for decane with
similar boundary conditions as in Fig. 1a, except with
YO1 = 0.75. As shown in Fig. 2, an increase in ambient
oxidizer mass fraction leads to higher flame tempera-
tures and brings the flame closer to the liquid surface
as expected. The proximity of the flame to the liquid sur-
face for a low volatility fuel introduces the possibility of
individual droplet flames for low droplet surface temper-
atures. However, the occurrence of individual flames will
depend strongly on the array geometry.
Fig. 3 shows qD and UF versus liquid surface temper-
ature for decane with different oxidizer mass fractions.
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The effect of ambient temperature on qD and UF is illus-
trated in Fig. 4 for decane with YO1 = 0.75. Compari-
sons of qD and UF for decane, heptane, and methanol
are shown in Fig. 5a for YO1 = 0.231, and Fig. 5b for
YO1 = 0.75. The monotonic increase in UF with liquid
surface temperature is expected. The behavior of qD is
noteworthy. For decane, qD exhibits a local maximum
that is more pronounced than with heptane or methanol.
This occurs with decane because of the large variation
in flame location due to surface temperature. Note that
k/cp depends on mixture temperature, and also that
flame temperatures (and therefore k/cp) and flame stand-
off distances (in terms of U) increase with liquid surface
temperature. Therefore, the integral in Eq. (43) is mini-
mized when the flame is located at some intermediate
distance from the droplet surface. In Figs. 3–5b, the ef-
fect of increasing YO1 is to increase the magnitude of
qD (due to higher mixture temperatures) and shift the
local maximum to higher U values (since flames will exist
closer to the liquid surface with increasing YO1). With
heptane and methanol, UF will not vary over as broad
a range as with decane, hence the local maxima are less
obvious.

qD and UF depend upon fuel type and scalar bound-
ary conditions. Therefore, to facilitate future calcula-
tions, correlations for qD and UF with surface
temperature are given in Tables 1–6 for decane, heptane,
and methanol with different boundary conditions. As
permitted by the unitary Lewis number, k/cp has been
used in Eqs. (42)–(44). Note that the data presented in
Tables 1–6 are applicable only with the specified bound-
ary conditions. From Fig. 4, ambient temperature is
shown to have a moderate effect on qD, but a negligible
effect on the determination of UF. However, changes in
YO1 will strongly affect both qD and UF. Eqs. (42)–
(44) need to be solved with the appropriate fuel type
and boundary conditions.

With the assumption qD = constant, the coupled sys-
tem of integral Eqs. (42)–(44) are reduced to (45) and
(46), which are independent of qD. However, since qD
is necessary to calculate actual vaporization rates or
for liquid-heating calculations, using Eq. (43) together
with (45) and (46) will provide the mathematically cor-
rect weighted average of qD to be used with the constant
qD assumption. The value of qD computed in this man-
ner is considered to be based on the constant qD
assumption, and is preferable to using a value at the
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liquid surface, far-field, or other arbitrarily chosen aver-
age. This will be termed as an ‘‘average’’ qD. The first
Table 1
Curve-fit coefficients for qD ¼ k=cp (g/m s) and UF as a function of s

Decane: TWB = 429.73 K Heptane: TWB = 359.

qD ¼ k=cp UF qD ¼ k=cp U

a0 1.1409991E+02 �6.9280734E+02 1.7972100E+01 �
a1 �1.6938311E+00 1.5254532E+01 �3.2627383E�01
a2 1.0276693E�02 �1.3010970E�01 2.2927641E�03 �
a3 �3.2540528E�05 5.6362410E�04 �7.8475187E�06
a4 5.6537302E�08 �1.3253211E�06 1.3167346E�08 �
a5 �5.0835936E�11 1.6175097E�09 �8.7076543E�12
a6 1.8311169E�14 �8.0507140E�13

qD;UF ¼ a0 þ a1T S þ a2T 2
S þ a3T 3

S þ a4T 4
S þ a5T 5

S þ a6T 6
S (298 K 6 T
iteration of the solution to Eqs. (42)–(44) with
qD ¼ k=cp ¼ qD will yield this average value.

Note that Eq. (43) is not a volume-weighted average
of k/cp in the gas-phase. The integral in U will emphasize
(spatially) the volume near the liquid where the magni-
tude of $U is large, and will tend to give less emphasis
to the far-field despite the considerable volume located
far from the droplets. A comparison between qD based
on the averaged value and qD obtained through solution
of Eqs. (42)–(44) is shown in Fig. 6 for decane, heptane,
and methanol with T1 = 298 K and YO1 = 0.231. The
constant qD assumption does not significantly alter qD
near wet-bulb temperatures. Fortunately, all of the liter-
ature on quasi-steady droplet array vaporization or
combustion deal with droplets at wet-bulb temperatures.
The discrepancy at lower liquid surface temperatures is
more pronounced and will impact liquid heating rates
in transient calculations. At 298 K, qD based on the
average value exceeds the exact value by more than
40% for decane yet underestimates the exact value by
1.3% for heptane.

Flame surface contour values UF will also vary when
computed with Eq. (44) versus Eq. (46). This is illus-
trated in Fig. 7 for the three fuels with T1 = 298 K
and YO1 = 0.231. Values for UF obtained with Eq.
(46) are consistently larger, indicating greater flame
stand-off distances. While the percent difference between
UF values obtained with and without the constant qD
assumption do not change significantly with liquid sur-
face temperature, the translation to actual stand-off dis-
tance is more dramatic. With $U! 0 for large
distances, actual flame locations become strongly depen-
dent on UF as UF ! 1 in the far-field. Flame stand-off
distances for isolated droplets are shown in Fig. 8 using
UF values from Eqs. (44) and (46). The extent to which
Eq. (46) overestimates flame stand-off distances at wet-
bulb temperatures is substantial. The use of an average
qD over-predicts flame stand-off distances by factors
of 2.11, 2.09, and 1.39 for decane, heptane, and metha-
nol at their respective wet-bulb temperatures. These fac-
tors will increase slightly to 2.15, 2.13, and 1.42 when
urface temperature with T1 = 298 K and YO1 = 0.231

36 K Methanol: TWB = 327.44 K

F qD ¼ k=cp UF

2.1186766E+02 4.5582964E+02 9.5487600E+02
2.7093006E+00 �7.4235815E+00 �1.4408079E+01
1.3791967E�02 4.8334587E�02 8.5992197E�02
3.5053468E�05 �1.5729774E�04 �2.5375005E�04
4.4438132E�08 2.5593365E�07 3.7025159E�07
2.2464770E�11 �1.6660221E�10 �2.1355782E�10

S(K) 6 TWB).



Table 2
Curve-fit coefficients for qD ¼ k=cp (g/m s) and UF as a function of surface temperature with T1 = 298 K and YO1 = 0.5

Decane: TWB = 437.96 K Heptane: TWB = 365.09 K Methanol: TWB = 331.62 K

qD ¼ k=cp UF qD ¼ k=cp UF qD ¼ k=cp UF

a0 �6.6162770E+01 �3.8947800E+03 1.2216370E+02 4.4219475E+02 1.5519001E+03 �2.8653131E+03
a1 1.3282320E+00 6.5867670E+01 �1.9237116E+00 �6.9357188E+00 �2.5067550E+01 4.7501479E+01
a2 �1.0680260E�02 �4.6067990E�01 1.2060450E�02 4.2852367E�02 1.6196203E�01 �3.1436608E�01
a3 4.4410670E�05 1.7055630E�03 �3.7636245E�05 �1.3069499E�04 �5.2325717E�04 1.0377826E�03
a4 �1.0129130E�07 �3.5259770E�06 5.8505657E�08 1.9733933E�07 8.4540568E�07 �1.7084663E�06
a5 1.2067060E�10 3.8607590E�09 �3.6273151E�11 �1.1823890E�10 �5.4650435E�10 1.1220888E�09
a6 �5.8867090E�14 �1.7499690E�12

qD;UF ¼ a0 þ a1T S þ a2T 2
S þ a3T 3

S þ a4T 4
S þ a5T 5

S þ a6T 6
S (298 K 6 TS (K) 6 TWB).

Table 3
Curve-fit coefficients for qD ¼ k=cp (g/m s) and UF as a function of surface temperature with T1 = 298 K and YO1 = 0.75

Decane: TWB = 440.62 K Heptane: TWB = 366.93 K Methanol: TWB = 332.97 K

qD ¼ k=cp UF qD ¼ k=cp UF qD ¼ k=cp UF

a0 �2.2195020E+02 �4.0495110E+03 2.4234938E+02 8.3738030E+02 2.8022377E+03 �6.0042483E+03
a1 3.8761490E+00 6.6938360E+01 �3.7485112E+00 �1.2556305E+01 �4.5142295E+01 9.7188321E+01
a2 �2.7930220E�02 �4.5781820E�01 2.3122079E�02 7.4679529E�02 2.9088726E�01 �6.2845708E�01
a3 1.0629800E�04 1.6582910E�03 �7.1114268E�05 �2.2044105E�04 �9.3726464E�04 2.0290175E�03
a4 �2.2541950E�07 �3.3556380E�06 1.0911728E�07 3.2339673E�07 1.5101650E�06 �3.2704166E�06
a5 2.5269590E�10 3.5980320E�09 �6.6862496E�11 �1.8880698E�10 �9.7347081E�10 2.1053956E�09
a6 �1.1707460E�13 �1.5977240E�12

qD;UF ¼ a0 þ a1T S þ a2T 2
S þ a3T 3

S þ a4T 4
S þ a5T 5

S þ a6T 6
S (298 K 6 TS (K) 6 TWB).

Table 4
Curve-fit coefficients for qD ¼ k=cp (g/m s) and UF as a function of surface temperature with T1 = 1000 K and YO1 = 0.231

Decane: TWB = 432.80 K Heptane: TWB = 361.51 K Methanol: TWB = 329.14 K

qD ¼ k=cp UF qD ¼ k=cp UF qD ¼ k=cp UF

a0 6.7217369E+01 �3.7624394E+02 2.8856566E+01 �2.2672283E+02 6.0736739E+02 6.8729452E+02
a1 �9.2629444E�01 9.9507754E+00 �4.9150489E�01 2.9270726E+00 �9.8603853E+00 �9.9879420E+00
a2 5.0622875E�03 �9.3054160E�02 3.2965380E�03 �1.5083249E�02 6.4010604E�02 5.6822662E�02
a3 �1.3716876E�05 4.2546193E�04 �1.0896942E�05 3.8917925E�05 �2.0772403E�04 �1.5764001E�04
a4 1.8445469E�08 �1.0354751E�06 1.7799610E�08 �5.0266349E�08 3.3704359E�07 2.1215631E�07
a5 �9.8580378E�12 1.2932523E�09 �1.1522436E�11 2.6003527E�11 �2.1879011E�10 �1.0969423E�10
a6 �6.5400539E�13

qD;UF ¼ a0 þ a1T S þ a2T 2
S þ a3T 3

S þ a4T 4
S þ a5T 5

S þ a6T 6
S (298 K 6 TS (K) 6 TWB).

Table 5
Curve-fit coefficients for qD ¼ k=cp (g/m s) and UF as a function of surface temperature with T1 = 1000 K and YO1 = 0.5

Decane: TWB = 438.85 K Heptane: TWB = 365.71 K Methanol: TWB = 332.16 K

qD ¼ k=cp UF qD ¼ k=cp UF qD ¼ k=cp UF

a0 �7.7140812E+01 �4.1622188E+03 1.4220318E+02 4.6752118E+02 1.8237532E+03 �3.4848327E+03
a1 1.4915501E+00 7.0228395E+01 �2.2248455E+00 �7.3119532E+00 �2.9431074E+01 5.7468166E+01
a2 �1.1674318E�02 �4.9006906E�01 1.3872196E�02 4.5062196E�02 1.8998059E�01 �3.7842926E�01
a3 4.7579683E�05 1.8103781E�03 �4.3090036E�05 �1.3712154E�04 �6.1321656E�04 1.2434220E�03
a4 �1.0686595E�07 �3.7346827E�06 6.6719339E�08 2.0660373E�07 9.8982510E�07 �2.0381041E�06
a5 1.2578962E�10 4.0808233E�09 �4.1224351E�11 �1.2353895E�10 �6.3924350E�10 1.3331937E�09
a6 �6.0777006E�14 �1.8459995E�12

qD;UF ¼ a0 þ a1T S þ a2T 2
S þ a3T 3

S þ a4T 4
S þ a5T 5

S þ a6T 6
S (298 K 6 TS (K) 6 TWB).
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Table 6
Curve-fit coefficients for qD ¼ k=cp (g/m s) and UF as a function of surface temperature with T1 = 1000 K and YO1 = 0.75

Decane: TWB = 441.06 K Heptane: TWB = 367.24 K Methanol: TWB = 333.26 K

qD ¼ k=cp UF qD ¼ k=cp UF qD ¼ k=cp UF

a0 �2.2299130E+02 �4.4354502E+03 2.6606771E+02 9.1448930E+02 3.1823094E+03 �6.6134922E+03
a1 3.8742307E+00 7.3165929E+01 �4.1039982E+00 �1.3694516E+01 �5.1240790E+01 1.0692724E+02
a2 �2.7786377E�02 �4.9941044E�01 2.5257252E�02 8.1367671E�02 3.3003071E�01 �6.9063176E�01
a3 1.0531741E�04 1.8054976E�03 �7.7536456E�05 �2.4001274E�04 �1.0628851E�03 2.2271671E�03
a4 �2.2254624E�07 �3.6469375E�06 1.1878968E�07 3.5193717E�07 1.7117284E�06 �3.5856704E�06
a5 2.4871325E�10 3.9037251E�09 �7.2697865E�11 �2.0540668E�10 �1.1028285E�09 2.3057188E�09
a6 �1.1493044E�13 �1.7306822E�12

qD;UF ¼ a0 þ a1T S þ a2T 2
S þ a3T 3

S þ a4T 4
S þ a5T 5

S þ a6T 6
S (298 K 6 TS (K) 6 TWB).
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YO1 = 0.75. The overestimation of stand-off distances
will also be present in multiple droplet arrays at wet-
bulb temperatures. For all but the sparsest arrays,
flames will be located at large distances from the array
center so that a spherically symmetric solution is valid
[11]. Although the error is less significant at lower liquid
surface temperatures, a large fraction of the droplet life-
time is spent with the liquid surface near wet-bulb tem-
peratures. Using a conduction-limit model [12], and with
an ambience of air at 298 K, isolated decane and hep-
tane droplets initially at 298K will have attained normal-
ized surface temperatures of (TS � 298)/(TWB � 298) =
0.5 in approximately 0.5% of their total lifetime. Nor-
malized surface temperatures of (TS � 298)/(TWB �
298) = 0.75 are attained in 3.3% and 2.1% of the total
lifetimes for decane and heptane, respectively. Liquid-
surface heating is even faster when YO1 > 0.231. There-
fore, ‘‘observed’’ flame locations would likely fall in the
regime where liquid surface temperatures are near wet-
bulb values and the over-prediction of flame location
is substantial. Labowsky [3] indicates that an unsteady
far-field may be responsible for the over prediction.
Raghunandan and Mukunda [17] found that the use
of variable properties for single droplets with unitary
Lewis number reduced flame stand-off distances by al-
most a factor of two. The current finding agrees with
[17], and shows that the assumption qD = constant plays
a large role in the over estimation of flame stand-off
distances.

Still, even with variable properties, some over-predic-
tion of stand-off distance is apparent. No experimental
evidence about flame-stand-off exists for droplet arrays
but the single-droplet results of Okajima and Kumagai
[18] for heptane and Dakka and Shaw [19] for decane
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are available. Our results are still somewhat higher for
the special case of a spherically symmetric burning
droplet. Raghunandan and Mukunda [17] found that a
non-unitary Lewis further reduced stand-off distances
by �15%. Law and Law [20,21] produced theories for
spherically symmetric droplet burning with non-unitary
Lewis number and variable properties and without tran-
sient heating. For heptane, the predicted stand-off dis-
tance compares favorably with the experimental result
of Okajima and Kumagai [18]. The theory with non-
unitary Lewis number and a common mass-diffusivity
[20] agreed quite well with experiment, indicating that
a detailed transport description might not be needed.
Certainly, there is reason to explore extension of the li-
quid-burning theory of this paper to the case of non-uni-
tary Lewis number.
4. Conclusions

A generalized approach to liquid-fuel combustion
problems for multiple-droplet arrays is presented. The
gas-phase property analysis is independent of geometri-
cal effects making the current analysis applicable in a
variety of liquid configurations not limited to droplet ar-
rays or sprays. The modification of burning rates due to
droplet array size or configuration is dictated by the
solution to the potential function that governs mass flux
in the gas-phase, and satisfies Laplace�s equation. Theo-
retical foundations for the existence of the mass flux po-
tential function have been provided. Gas-phase scalar
variables, transport properties, specific heats, and flame
locations for a specified fuel type and boundary condi-
tions depend only on the potential function and liquid
surface temperature. Therefore, the problem for the sca-
lar properties becomes one-dimensional for any configu-
ration while the three-dimensional analysis is limited to
the solution of Laplace�s equation. Flame stand-off dis-
tances are found to decrease by more than a factor of
two when the quantity qD is not assumed constant.
The effect of boundary conditions on transport proper-
ties and flame location is demonstrated. Correlations
for coupling an unsteady liquid-phase to a quasi-steady
gas-phase are provided.
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